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Abstract We characterize the investor’s optimal portfolio allocation subject to a
budget constraint and a probabilistic VaR constraint in complete markets environ-
ments with a finite number of states. The set of feasible portfolios might no longer be
connected or convex, while the number of local optima increases exponentially with
the number of states, implying computational complexity. The optimal constrained
portfolio allocation may therefore not be monotonic in the state–price density. We
propose a type of financial innovation, which splits states of nature, that is shown to
weakly enhance welfare, restore monotonicity of the optimal portfolio allocation in
the state-price density, and reduce computational complexity.
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1 Introduction

Economists have formally addressed the problem of portfolio optimization subject to
a budget constraint starting with Markowitz (1952) and Roy (1952). Roy’s criterion
delimits the probability of highly adverse outcomes and maximizes expected return,
while Markowitz’ solution trades off the mean return against the variance as a risk
indicator. Though less popular than the mean variance tradeoff, the concern for the
downside risk aspect remained, as evidenced by Markowitz’s (1959) contribution using
the semi-variance, Arzac and Bawa’s (1977) extension of Roy’s safety first criterion
and Leland’s (1980) portfolio insurance. The downside risk measures received renewed
attention with the official adoption of the Value-at-Risk (VaR) measure in the Basel
capital accords and the attention for downside risk concerns in behavioral finance.
Consequently VaR has emerged as an important side constraint on investment behavior.

We formally analyze the portfolio optimization problem within the expected utility
function framework, subject to a budget constraint and a VaR constraint i.e., a prob-
abilistic constraint. The analysis is set in an economy with a finite number of states
and a complete set of elementary securities. The special case of our problem is the
portfolio insurance problem, which has been analyzed before. The incorporation of
a VaR constraint both complicates the analysis and has interesting implications. We
show that the optimal constrained portfolio allocation may not be monotonic in the
state–price density and that this provides a new rationale for financial innovation.

The prior literature on financial innovations recognizes three distinct categories
of innovation. Initial models document how financial innovation is used to complete
markets, see Ross (1976). The second category is strictly within the incomplete mar-
ket paradigm, i.e., even after the introduction of new securities the market remains
incomplete. In this case, some investors have an incentive to issue new securities, but
this may not improve efficiency (See e.g., Allen and Gale 1988, 1991). A third cate-
gory discusses financial innovation in a complete market setting where the marketable
securities, which are bundles of (non-traded) elementary securities, achieve complete
spanning. In this case, regulation prohibits unlimited trading in available securities.
Miller (1986, 1992) argues that financial innovation is often driven by regulation, e.g.
short sale restrictions. Such trading friction gives an incentive for financial innovation
via unbundling of states, in order to achieve the Pareto optimal free market outcome
through trading the elementary securities. A representative example of this approach is
Chen (1995). Grinblatt and Longstaff (2000) find that stripping and trading separately
the principal and coupons of treasury bond helps complete markets and overcome fric-
tions, which explains why rebundling is observed simultaneously with unbundling.

In this paper we introduce a fourth category of financial innovations in complete
markets, where all elementary securities are freely traded. We demonstrate that an
incentive for financial innovation may remain whereby elementary securities are split
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Optimal portfolio allocation under the probabilistic VaR constraint 347

up and new states are artificially created through a randomizing devise. We show
that the demand for this type of innovation is triggered by the imposition of non-
deterministic downside risk constraints, such as VaR. In this case, the splitting of
states can help in reducing the negative effects of risk constraints on expected utility.
An example of this type of securities, discussed below, are the lottery bonds issued by
several European governments. Lottery bonds are bonds where a randomizing device
is used to determine which bonds are called in early or which bonds pay a coupon.
We show that such type of securities may simplify the investor’s portfolio allocation
problem.

We formally demonstrate that the portfolio problem with a probabilistic downside
risk constraint is computationally intractable when the state space is finite, but large,
i.e., is NP-complete.1 We proceed to show that investors can simplify their portfo-
lio allocation problem and increase welfare through financial innovation that entails
introducing additional redundant securities which are lotteries over existing elemen-
tary Arrow–Debreu securities. By splitting existing states, we show that not only is
utility increased, but also that an otherwise complex problem can be rendered solvable,
in the sense that it takes only a polynomial number of steps so that the problem is in
class P.

While we consider the optimal portfolio allocation for any value of VaR risk level
δ ∈ [0, 1], the preceding literature has focused on the two extreme values, δ = 1 and
δ = 0. First, consider traditional portfolio allocation where δ = 1, such that the risk
constraint is never binding. Solving such problems does not introduce any significant
difficulty as standard methodology readily applies (see e.g. Kuhn and Tucker 1951;
Uzawa 1958) and a global optimum is ensured for any strictly concave utility function.
It follows that this portfolio problem is readily solved in polynomial time.

Second, the case of δ = 0 corresponds to portfolio insurance with a determin-
istic floor constraint such that losses cannot fall below the exogenously determined
level, K . Grossman and Vila (1989) demonstrate that the solution to this problem
is straightforward, where in effect the investor buys a put option with exercise price
K . We demonstrate below that the portfolio insurance problem is computationally
simple, i.e., solvable in polynomial time. An early example of a non-deterministic
constraint is the safety-first portfolio selection program as analyzed in the Arzac and
Bawa (1977) lexicographic interpretation. However, safety-first may lead to strained
portfolio choices: A portfolio manager may allocate just enough to the safe asset to
meet the downside risk constraint, while the remainder of funds is invested in the
option with the highest available strike price (see Dert and Oldenkamp 1997; Vorst
2000).

1 NP-complete (non-deterministic polynomial complete) is a term used in complexity theory to identify
a particular class of problems. For an NP-complete problem, it is generally believed that the relationship
between the number of input parameters to the problem and the problem complexity is exponential, that
is, the computational time for solving the problem increases exponentially with the size of the problem.
For example, the travelling salesman problem and the partition problem are NP-complete. For a formal
definition of NP-completeness, see chapt. 36 in Cormen et al. (1999) or Papdimitriou and Steiglitz (1982,
chapt.15). If the solution only requires a polynomial number of steps, the problem is in the class P.
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The general case considered in this paper, allows δ to take any value between zero
and one. This is the VaR problem where the investor does not want wealth to fall
below level K with more than a given probability δ. We demonstrate that this problem
is computationally complex unless the number of states of nature is sufficiently small
or the VaR constraint is non-binding. The reason for the complexity is that the set of
feasible portfolios is no longer convex, in fact, the budget set has disjoint components,
each containing a local optimum. In an economy with few states it is straightforward
to consider all components to find the solution. However, in general, the number of
local maxima can increase exponentially in the number of states, i.e., the number of
local maxima may approach n!.

We show how such a non-deterministic downside risk constraint may also change
the qualitative aspect of the solution in an important way. It is well known that the
optimal portfolio is monotonic in the state price density when δ = 0 or δ = 1. Basak
and Shapiro (2001) conclude that VaR constrained optimal portfolio allocations are
monotonic with respect to the state price density in a Brownian motion setting with
continuous rebalancing. In contrast, we show that the optimal portfolio allocation
can be non-monotonic in the state price density when the state space is discrete.
Furthermore, for the discrete state space problem we derive a sufficient condition
such that the optimal portfolio allocation of the discrete problem is monotonic in the
state price density. Finally, we show that investors have an incentive by means of
financial innovation to create seemingly redundant securities to meet this sufficient
condition. These new securities render the initial complex problem solvable, since the
monotonicity in the state price density guarantees polynomial time solutions.

In the special case where the probabilities and prices can be weakly reverse ordered,
the VaR constrained problem is simple. Under this reverse ordering condition we can
write the risk constraint as a restriction on price only. In effect under this condition,
the VaR constrained problem is reduced to a generalized portfolio insurance problem.
Consider the special case of uniform probabilities. Since probabilities do not play a
role for any δ, the intuition is immediate. Under the reverse ordering condition, we
show that the risk constrained problem enables polynomial time solutions by employ-
ing techniques similar to Grossman and Vila (1989). When state splitting is feasible,
states can be split such that our reverse ordering condition is satisfied. Relative to the
augmented state space, the problem has a polynomial time solution. We also demon-
strate the positive impact of state splitting in an example where the VaR constraint is
met optimally by investing in one of the two new states. Subsequent to state splitting,
the optimal portfolio is monotonic in the state price density.

The structure of the paper is as follows. In Sect. 2 we demonstrate that the risk
constrained problem is computationally complex. Section 3 first analyzes portfolio
insurance and then introduces the reverse ordering condition. We show that under the
reverse ordering condition, the solution to the VaR constrained problem is simple.
In Sect. 4 we discuss the drive for financial innovation to bring about the reverse
ordering condition. Section 5 concludes the paper. Two examples are used through-
out the text to illustrate our ideas. The examples offer a roadmap for the theoretical
developments.
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Optimal portfolio allocation under the probabilistic VaR constraint 349

2 Utility maximization and risk constraints

We consider a single period complete market spanned by n Arrow–Debreu securities.
The investor with initial wealth, W , can purchase for price pi contingent claims on
each state, i = 1, . . . , n, which pay out $1 in state i at the investment horizon and
zero otherwise. State i occurs with probability πi . We consider an investor whose
preferences are characterized by a strictly increasing, concave expected utility function
in wealth. The investor’s problem is choosing portfolio {xi }n

i=1 where xi denotes the
number of security i purchased.

2.1 Risk restrictions

Public policy often restricts the risk that can be assumed by a strict subset of all
investors. For example, national supervisory authorities impose VaR constraints on
commercial banks in order to contain market risk. Other financial intermediaries like
pension funds work with self-imposed constraints like portfolio insurance where the
investors’ net worth is never allowed to fall below a certain predetermined level K .
The formal definition of the VaR constraint is as follows.

Definition 1 (Value-at-Risk)VaR is the zero’th lower partial moment. For any discrete
distribution, the VaR constraint can be written as

n∑

i=1

1{xi ≤K }πi ≤ δ

where the indicator function in the VaR constraint is with respect to state i .2

To ensure the existence of a finite solution to the investor’s portfolio choice problem,
|xi | < ∞,∀i , two different approaches have been suggested. First, one can rule out
unlimited borrowing. For presentational simplicity, we simply rule out all short sales
in Arrow–Debreu securities. However, all results go through with an arbitrary, finite
lower bound on short selling. Moreover note that this does not constrain investors from
short selling non-elementary securities. Also note that this does not affect the feasibility

2 With a continuous state space, the VaR is:

K∫

−∞
f (x)dx =

∞∫

−∞
1{x≤K } f (x)dx = δ (1)

to allow for unordered integrands.
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of the VaR problem.3 Alternatively, we could impose mild regularity conditions on
the investor’s utility function, such as the Inada conditions or the self-concordance
condition, see Ingersoll (1987, p. 189), and den Hertog (1995) respectively. Since all
examples below adhere to these regularity conditions, the short selling restriction is
not driving our results. Our investor’s problem can be stated as:

Problem 1

max
{xi }n

i=1

n∑
i=1

πi u(xi ) s.t.
n∑

i=1
pi xi ≤ W

n∑
i=1

1{xi ≤K }πi ≤ δ

x1, x2, . . . , xn ≥ 0

This implies that the probability that the value of the investor’s portfolio falls below
K at the investment horizon cannot exceed δ. While we consider any value of δ ∈ [0, 1],
the preceding literature has focused on the two extreme values, δ = 1 and δ = 0.

2.2 The standard portfolio choice problem

Consider first the standard portfolio choice problem with δ = 1, which we refer to
as the unconstrained case because the VaR constraint is never binding. Let λ denote
the Lagrange multiplier associated with the budget constraint which is binding. An
interior solution, if it exists, is characterized by the budget constraint and

xi = (
u′)−1

(λpi/πi ) , ∀i. (2)

Without loss of generality, the states can then be ordered such that

λpi/πi ≥ λpi+1/πi+1, ∀i (3)

3 Ruling out infinite shortsales is equivalent to preventing infinite borrowing. Impose restriction, B, on
borrowing then the investor’s problem can be stated as:

min{xi }n
i=1

n∑
i=1

1{xi ≤K }πi s. t.
n∑

i=1
pi xi = W

x1, x2, . . . , xn ≥ −B

Let yi = xi + B, then this problem is equivalent to

min{yi }n
i=1

n∑
i=1

1{yi ≤B+K }πi s. t.
n∑

i=1
pi yi = W + B

n∑
i=1

pi

y1, y2, . . . , yn ≥ 0

which for the purpose of the arguments in this paper is equivalent to ruling out short sales.
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or, equivalently, such that

xi ≤ xi+1, ∀i

Given the assumptions above, the first-order conditions guarantee that (2) is a globally
optimal solution when the utility function is strictly concave and the domain is a
bounded convex set.

2.3 The portfolio insurance problem

Secondly, consider the portfolio choice problem with δ = 0. Grossman and Vila (1989)
demonstrate that this portfolio insurance problem has the intuitively appealing feature
that the investor buys a put with exercise price K . Further details of the solution are
discussed in Sect. 3. The more recent VaR constraint, discussed in the next subsection,
is an extended portfolio insurance problem where the investor’s net worth cannot
fall below K with more than δ probability. To formalize our analysis we introduce
terminology from operations research.

2.4 Solution complexity

In order to characterize the computational complexity, we relate the current Problem 1
to the partition problem since the partition problem is known to be NP-complete, see
Papdimitriou and Steiglitz (1982, chapt. 15). If a problem can be reduced to another
problem which is known to be a member of the NP-complete class, it follows that this
problem is also a member of this class. Furthermore, NP-completeness also implies
that checking the correctness of an answer must be possible in a polynomial number
of steps.

Definition 2 (Partition problem) Let {a1, a2, . . . , an; b} be n + 1 positive numbers
such that

∑n
i=1 ai = 2b. Does a subset S ⊂ {1, 2, . . . , n} exist such that

∑
i∈S ai = b?

Theorem 1 The feasibility of Problem 1 is NP-complete.

Proof It is trivial to see that the feasibility of Problem 1 is NP, i.e., checking answers
takes only a polynomial number of manipulations. To establish NP-completeness, we
only need show that the problem can be reduced to the partition problem. From a
given instance of the partition problem, let us construct an instance of Problem 1. Let
πi = ai

2b , pi = ai , 1 ≤ i ≤ n. Let K = b,W = b2 and δ = 1
2 . We claim that

the partition problem has a feasible solution if and only if Problem 1 has a feasible
solution. In fact, if the partition problem has a feasible solution S, that is

∑
i∈S ai = b,

we set xi = b if i ∈ S and xi = 0 otherwise. Then we have
∑n

i=1 pi xi = b2,∑
xi ≥K πi = 1

2 . Thus x is a feasible solution of Problem 1. Conversely, assume x is a

feasible solution of Problem 1. We have
∑n

i=1 pi xi = b2 and
∑

xi ≥K πi ≥ 1
2 . Denote
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S = {1 ≤ i ≤ n|xi ≥ K }. We have

b2 =
n∑

i=1

pi xi ≥
∑

i∈S

pi b

∑

i∈S

πi =
∑

xi ≥K

πi ≥ 1

2

Using pi = ai and πi = ai/2b we get

b ≥
∑

i∈S

ai ,

∑

i∈S

ai ≥ b

Hence we obtain
∑

i∈S ai = b. This means that S is a feasible solution of the partition
problem. �	

It follows that finding the solution to the VaR constrained portfolio choice Problem 1
is computationally complex since NP-complete problems are generally believed to not
be solvable in polynomial time. Hence, the optimal portfolio can be computed when
n is sufficiently small or the problem is otherwise simple (see below). In general the
number of local maxima may aproach n!, i.e., the number of potential local maxima
increases exponentially in the number of states.

Note that the proof of Theorem 1 allows for a risk neutral investor with limited short
sales. Thus, even when the lexicographic interpretation of the safety-first criterion,
as by Arzac and Bawa (1977), is feasible, it is also burdened by the computational
complexity.

2.5 Characterizing the optimal portfolio

The cause for the computational complexity that may arise due to the VaR side con-
straint is most easily explained by means of an example. This example will also be
used later in the paper to demonstrate the incentives for financial innovation.

Example 1 Consider a setting with a VaR constraint and logarithmic utility, and two
states of nature.

maxx1,x2 π1 log(x1)+ π2 log(x2)

s.t. p1x1 + p2x2 ≤ W
1{x1≤K }π1 + 1{x2≤K }π2 ≤ δ

Among the three possible orderings of probabilities and constraints, we consider the
case where 1 > δ > max (π1, π2) > 0, see Fig. 1. In the figure L represents the
unconstrained portfolio allocation that would arise in the absence of a VaR constraint,
which of course it violates. Due to the VaR constraint, the relevant budget constraint
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W
p1

W
p2

p2 /π2
p1 /π1

W −p2K

p1K

N

L

M

K

K

x1

x2

Fig. 1 Concave utility and the VaR constraint. Either x1 or x2 must satisfy the risk level K . The budget
constraint is between points W/p1 and W/p2. Due to the shortsale restriction, negative values are ruled
out, and the line segment between N and M is not feasible due to the VaR constraint. Hence the budget
constraint is the two disjoint pieces W/p1—N and M—W/p2. Note x2 is drawn along the horizontal axis

is the two disjoint line segments (0,W/p1)—N and M—(W/p2, 0). These segments
are individually convex, but not jointly, hence the Kuhn–Tucker conditions may only
give a local solution since there are two local optima.

We can write the VaR constraint as a product, since either x1 ≥ K or x2 ≥ K :

L = π1log(x1)+ π2log(x2)

+λ{W − p1x1 − p2x2}
+ψ{−(x1 − K )(x2 − K )}

The necessary Kuhn–Tucker conditions are

π1
1

x1
− λp1 − ψ(x2 − K ) = 0

π2
1

x2
− λp2 − ψ(x1 − K ) = 0

λ {W − p1x1 − p2x2} = 0

ψ{−(x1 − K )(x2 − K )} = 0

λ ≥ 0, ψ ≥ 0

Consider a specific parameterization. Assume π1 = 2/3, 2/3 < δ < 1 , p1 = 1/3,
p2 = 1/4, W = 1/4, and K = 23/32. In the unconstrained case, the optimal portfolio
allocation would be x1 = 1/2 and x2 = 1/3, which is represented by the point L in
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Fig. 1. To meet the VaR constraint, suppose we adjust the cheaper state, i.e., raise x1
to K (this appears to be cheaper because x1 is closer to K than x2 and has a lower state
price probability ratio, since p1/π1 = 1/2 < p2/π2 = 3/4). This position is labelled
as N in Fig. 1. Alternatively, we could raise x1 to K , the resulting portfolio allocation
is labelled as M in Fig. 1. The following Table summarizes the portfolio allocations
and expected utilities:

Maxima x1 x2 EU

Unconstrained (L) 1/2 1/3 −0.83
VaR constrained (N ) 23/32 1/24 −1.28
VaR constrained (M) 27/128 23/32 −1.15

The unconstrained solution L favors x1 over x2 since p1/π1 < p2/π2 (the usual
monotonicity property). The optimal VaR constrained portfolio upsets the usual or-
dering. Note that in the optimal VaR constrained solution, the ratio x1/x2 is only a
function of prices, p1 and p2, and the VaR constraint K . In contrast, both prices and
probabilities determine this ratio in the unconstrained solution. Since probabilities do
not determine the x1/x2 ratio in the VaR constrained case, the monotonicity of the
solution in the state price density suggested by Eqs. (2) and (3) can be upset. For
this reason all constrained local optima have to be evaluated to determine the global
maximum. We have shown by means of this two state example the following result.

Proposition 1 With a discrete number of states the VaR constrained optimal portfolio
solution may be non monotonic with respect to the state price density.

Below we write a unified Lagrangian function with probabilistic integer variables.
However, since such integer variables are non differentiable, solutions based on first
order conditions are not feasible. With many states this remains a cumbersome exer-
cise. Thus, with just two states we cannot fully do justice to the qualitative properties
of the VaR constrained solution. Therefore, we also povide a four-state example.

Example 2 Let the investor’s utility function be u(x) = −1/x , which implies a relative
risk aversion parameter of 2. Let there be four states. The following table lists the state
probabilities and state prices of the four elementary securities.

Statistic States

i 1 2 3 4
πi 1/100 1/2 9/100 40/100
pi 1/100 1/8 1/100 1/40

Suppose wealth W = 39/90. In the absence of a VaR constraint, the investor
chooses (x1, x2, x3, x4) = (10/9, 20/9, 30/9, 40/9), which yields expected util-
ity EU = ∑4

i=1 πi u (xi ) = −0.3510. Note that since the state price density is
(p1/π1, p2/π2, p3/π3, p4/π4) = (1, 1/4, 1/9, 1/16), the solution x1 ≤ x2 ≤ x3 ≤
x4 is in conformity with (3). Suppose the VaR regulation stipulates δ = 0.4999 and
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K = 2.5. The unconstrained solution does not meet the downside risk constraint,
since both x1 and x2 are below 2.5. Following the rule of thumb implied by the
state price density ordering, one would raise the consumption in the state 2, as x2
is closest to the VaR level 2.5. In that case the investor chooses (x1, x2, x3, x4) ≈
(0.86, 2.50, 2.59, 3.45), with expected utility EU = ∑4

i=1 πi u (xi ) ≈ −0.3622.
Note this portfolio allocation is feasible and preserves the ordering of the state price
density. This portfolio is, however, not the optimal solution. The investor is better
off by taking x1 = 2.5. This permits (x1, x2, x3, x4) ≈ (2.50, 2.14, 3.21, 4.28), with
expected utility EU = ∑4

i=1 πi u (xi ) ≈ −0.3576. Although this is the optimal VaR
restricted portfolio, the allocation is again not monotonic with respect to the state price
density since x1 > x2 < x3 < x4, of Proposition 1.

Statistic States EU

1 2 3 4
πi 1/100 1/2 9/100 40/100
pi 1/100 1/8 1/100 1/40

xi unconstrained 1.11 2.22 3.33 4.44 −0.3510
x2 constrained 0.86 2.5 2.59 3.45 −0.3622
x1 constrained 2.5 2.14 3.21 4.28 −0.3576

In the examples above the monotonicity of the optimal unconstrained allocation with
respect to the state price density is upset in the optimal VaR constrained allocation. In
Fig. 2 the dotted line shows that the optimal VaR constrained portfolio of Example 2 is
in fact non-monotonic with respect to the state price density. That is, the investor would
be strictly worse off by restricting attention to portfolios that exhibit monotonicity with
respect to the state price density. Interestingly, Basak and Shapiro (2001) consider the
VaR constrained portfolio problem in a continuous time setting and conclude that
the allocation is monotonic with respect to the continuous state price density derived
from underlying Brownian motion. Example 2 shows that the discrete case can be
qualitatively different.

3 Conditions for computational simplicity

Given that the investor’s portfolio problem is computationally complex, it is valuable
to identify special cases which are easily solvable, i.e., which are of polynomial order.

3.1 Portfolio insurance

Portfolio insurance is a special case of Problem 1 where δ = 0 which can be solved
in polynomial time.

Corollary 1 Portfolio insurance is in the class P.

Proof Grossman and Vila (1989) demonstrate that the problem is solved by imple-
menting a put at the desired VaR-level while the consumption in each state is reduced
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1

2

3

4

1
16

1
9

1
4 1

K

xi

pi
πi

+

+

+

+

+ + + + EU = −0.351 Unconstrained

EU = −0.362 Local constrained Optimum

EU = −0.358 Global constrained Optimum

Fig. 2 Monotonicity of solution

to finance this put, in keeping with the first order conditions of the unconstrained
problem at the reduced wealth level. Order the state consumption of the unconstrained
problem in descending order x1 ≥ · · · ≥ xn . Suppose the VaR restriction becomes
binding at xm < x1. A sequential search procedure involving at the most n − m steps
yields the optimal policy. First check whether the put that ensures consumption at
the VaR level in states m, . . . , n can be financed by reducing the consumption in the
remaining uninsured states. If this implies that consumption in state xm−1 drops below
the VaR level, restart the procedure by insuring consumption in states m −1,m, . . . , n
at the VaR level. Repeat this until the VaR level is met or exceeded in all states. �	

3.2 Uniform distribution

Suppose the probability distribution of the states were discrete uniform, i.e., π1 =
πi ,∀i . In that case, only the state prices matter, with or without the downside risk
constraint in place. Recall Example 1 and Fig. 1, which showed that prices and the
VaR level K determine the optimum allocation in the downside risk constrained equi-
librium, while prices and probabilities determine the portfolio choice in the uncon-
strained equilibrium. This latter conclusion is now replaced by recognizing that only
prices determine the allocation in both problems. In the unconstrained case if prices are
ordered by p1 ≤ p2 · · · ≤ pn , then x1 ≥ x2 ≥ · · · ≥ xn . For the VaR constrained case,
the program for finding the optimal solution preserves this monotonicity, and hence
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trivially the monotonicity with respect to the state price density, and is, moreover,
easily implemented. To find the optimal VaR constrained allocation, first compute the
unconstrained allocation. Subsequently, start tracing the allocation up to K for the
state with the lowest price which falls below K in the unconstrained solution. Then
turn to the next cheapest state and raise it to K . Repeat this procedure until the sum
of the probabilities of the (most expensive) states which have xi < K is less than or
equal to the desired level δ. This takes at most n − 1 steps.

Example 3 Continuing Example 1, we expand from two states to three, where state 1
is now divided up into two equally probable states labelled 1A and 1B. Each new state
costs half the price of the former state 1 security. This new three state economy has
state probabilites π1A = π1B = π2 = 1/3. Assume, as in Example 1, U (x) = log(x),
let W = 1/4, K = 23/32, p2 = 1/4, but p1A = p1B = 1/6. It is easily verified that
the expected utility, EU , of the unconstrained case and the VaR constrained case with
x2 = 23/32 is identical to the EU in Example 1, since the prices and probabilities of
states 1 and 2 in the new example are exactly half the price and probability of state 1
in Example 1.

x1A x1B x2 EU

Unconstrained 1/2 1/2 1/3 −0.83
x2 constrained 27/128 27/128 23/32 −1.15
x1A constrained 23/32 23/64 23/96 −0.93

However, since state 1 is now broken into two cheaper states, while state 2 has the
price and probability parameters of Example 1, it is now optimal to place the VaR
constraint on state 1A (or, alternatively state 1B), rather than raising the consumption
of the more expensive state 2. To meet the VaR constraint, the investor now minimizes
the expenditure by raising the allocation in those states which are closest to the VaR
level, as these are least costly. Note that this new solution is monotonic with respect
to the state price density.

3.3 Reverse order condition

We now generalize the previous case of uniform probabilities. Suppose that prices
and probabilities are weakly inversely ordered. Note that the previous case of uniform
distribution fulfills this inverse order condition. As we argue below, this case may
result from financial innovation. Formally the condition is:

Condition 1 Problem 1 satisfies the reverse order condition if there exists a labelling
of the states such that the pairs (πi , pi ) can be ordered such that

π1 ≤ π2 ≤ · · · ≤ πn

p1 ≥ p2 ≥ · · · ≥ pn

Remark 1 Note that the reverse ordering condition labelling satisfies the complete
market equilibrium condition (3).
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Theorem 2 For any δ, let q be the number such that

q∑

i=1

πi ≤ δ <

q+1∑

i=1

πi (4)

If (π, p) satisfies Condition 1, then Problem 1 can be transformed as follows:

max
n∑

i=1
πi u(xi ) s.t.

n∑
i=1

pi xi = W

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn

xq+1 ≥ K

(5)

Proof See Appendix A. �	
Theorem 3 The solution program to (5) is of polynomial order (is in P).

Proof Note that (5) is a linear constrained optimization problem. The feasibility prob-
lem of (5) is easy. We need only judge whether the inequality system has solutions.
To this end, consider the following linear program,

max xq+1 s.t
n∑

i=1
pi xi = W

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn

(6)

It is straightforward to see that the optimal value of (6) is W/(pq+1 + · · · + pn).
Therefore Problem 1 is feasible under Condition 1 if and only if W/(pq+1+· · ·+pn) ≥
K . Consider the following constrained problem:

max
n∑

i=1
πi u(xi ) s.t

n∑
i=1

pi xi = W

xi ≥ 0, i = 1, 2, . . . , q
xi ≥ K , i = q + 1, q + 2, . . . , n

(7)

If u(x) is strictly concave, following Grossman and Vila (1989), we can prove that
there exists W ′ ≤ W , such that

hi (W
′) =

{
xi (W ′) i = 1, 2, . . . , q
xi (W ′)+ max{K − xi (W ′), 0} i = q + 1, q + 2, . . . , n

(8)

and {hi (W ′)} is an optimal solution of (7). In (8) {xi (W ′)} is the optimal solution of
the following simple portfolio optimization problem

max
n∑

i=1
πi u(xi ) s.t

n∑
i=1

pi xi = W ′

x1, x2, . . . , xn ≥ 0
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Under Condition 1, we have 0 ≤ h1(W ′) ≤ h2(W ′) ≤ · · · ≤ hn(W ′). Thus {hi (W ′)} is
also a feasible solution of (5). Denote Γ = {x ≥ 0|∑n

i=1 pi xi = W ; xq+1, . . . , xn ≥
K } the feasible solution set, and denote Ω the feasible solution set of (5), i.e., Ω =
{x ≥ 0| ∑n

i=1 pi xi = W ; 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, xq+1 ≥ K }. It is obvious that
Ω ⊂ Γ . We claim that {hi (W ′)} is an optimal solution of (5). In fact, sinceΩ ⊂ Γ , we
have V (Γ ) ≥ V (Ω). Here V (Γ ) and V (Ω) are the optimal objective function values.
As {hi (W ′)} ∈ Ω , we have V (Ω) ≥ ∑n

i=1 πi u(hi (W ′)) = V (Γ ). This indicates
{hi (W ′)} is the optimal solution of (5) as well. �	

4 Financial innovation

In addition to the traditional uses of financial innovation discussed in the introduc-
tion, we identify a new application which in general enhances welfare, facilitates the
characterization of the optimal portfolio allocation, and reduces complexity. As noted
in Sect. 2, the Value-at-Risk constrained utility maximization Problem 1 is computa-
tional complex. However, if the reverse order Condition 1 holds, Problem 1 can be
solved in polynomial time. This suggests that if we are able to suitably transform the
state space to satisfy the reverse order condition, then the transformed Problem 1 will
have a polynomial time solution.

4.1 State splitting

Consider an economy where the original state space can be augmented by splitting
a state into two or more states. State splitting can be achieved by applying a public
randomization device when state i arises (such as a roll of dice). This split augments
the original state space.

Definition 3 State splitting by an integer factor γi entails dividing state i into γi

equally likely sub-states, each of which occur with probability πa
i = πi/γi and cost

pa
i = pi/γi .

Example 4 (Example 1 continued). We now relate Examples 1 and 3. State 1 in Exam-
ple 1 can be transformed into states 1A and 1B of Example 3 by splitting state 1 in half
so that one ends up with π1A = π1B = π2 = 1/3, while the prices are respectively
p1A = p1B = 1/6, p2 = 1/4. Thus state splitting for the Example 1 setup, turns this
case into Example 3.

Proposition 2 The procedure of state splitting weakly enhances the investor’s ex-
pected utility

This proposition follows immediately since any portfolio which was feasible prior
to state splitting, remains feasible. The increase in welfare may be possible since state
splitting relaxes the granularity of the problem so that the VaR constraint becomes less
binding.4 In the case of Example 3 the expected utility increases with some 20%. Note

4 Marin and Rahi (1999) show that randomization may increase welfare due to the Hirshleifer effect that
early resolution of uncertainty can limit the availability of insurance.
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also that the new solution preserves the monotonicity with respect to the state price
density as the reverse ordering conditions holds. Splitting states such that the reverse
ordering condition applies is always possible if e.g. the probabilities are rationals. In
this case there exists a common denominator τ for the probabilities of the original
state space {πi |i = 1, . . . , n}.

The following is directly implied by the discussion in Sect. 3.2.

Proposition 3 Suppose the state probabilities {πi |i = 1, . . . , n} have a common
denominator 1/τ for some integer τ . Then each state i can be split by factor γi =
πiτ , such that the probability distribution function associated with the augmented
state space is discrete uniform, πa

i = πa, ∀i . The VaR constrained optimal portfolio
allocation is then easily characterized since it is monotonic in prices.

We do not however require a common denominator since it is not necessary to render
the state space discrete uniform. In general, only some states have to be adjusted to
satisfying the reverse ordering condition from Sect. 3.3.

Proposition 4 Suppose there exists a vector of integers (γ1, . . . , γn) such state split-
ting implies that the reverse ordering conditions is satisfied. Then the VaR constrained
portfolio optimization problem is of polynomial order (is in P).

Proof Apply Theorem 3. �	
Since the expected utility of the risk constrained investor’s optimal portfolio rises

weakly in response to state splitting (as observed by the fact that the Lagrange multi-
plier associated with the VaR constraint declines), VaR constrained investors are in fact
motivated to financial innovation (state splitting) by the risk regulation itself. Hence,
the probabilistic type of downward risk constraints provides incentives to financial
innovation.

One question unanswered by this theoretical analysis is how state splitting might be
implemented in practice. To address this issue, consider an existing class of securities
which indeed do split states. Several European government issue bonds which are
randomly callable or pay coupons at random. Schilbred (1973) analyzes the case
of Italian bonds with random redemption. For the so-called Italian lottery bonds, a
predetermined (at the date of issue) percentage of the bond series is retired early each
year. An annual lottery determines which particular bonds are retired. This lottery thus
introduces exogenous randomness into the economy and effectively creates new states.
In a similar vein Green and Rydqvist (1997, 1999) analyze random coupon payments
for Swedish government bonds, and Ukhov (2002) describes an example of Russian
bonds. The prediction suggested by this paper is that the demand for such securities
will increase due to the imposition of the VaR constraints by the BIS regulations. We
show this by revisiting the examples.

Example 5 We demonstrate the effect of state splitting for the case of the Example 1
portfolio problem. Recall Example 3, and note that since the probabilities are uniform,
it splits in effect the Example 1 states in such a way that the reverse ordering condition
holds. The unconstrained equilibrium of the Example 1 portfolio is on the M N—
segment in Fig. 3, while the suboptimal VaR constrained portfolio is at N and the
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T

K

K

K

Q

N

M

x2

x1B

x1A

W/p2

W/p1

Fig. 3 Impact of state splitting. The cube is the VaR constraint, while the gray plane is the budget constraint

optimal VaR constrained portfolio is at M in terms of Figure 3. Due to state splitting,
the calculations in Example 3 indicate it is optimal to move from M in Fig. 3 to the
position T exactly half way between Q and N on the line segment QN of Fig. 3.

We conclude by illustrating that the reverse ordering condition is not necessary for
the optimal VaR constrained portfolio to be monotonic in the state price density.

Example 6 Continuing with Example 2, this problem clearly has too many states to
allow depicting these geometrically as we do in Figs. 1 and 3. We have already seen that
the optimal VaR constrained solution, in the absence of state splitting, is not monotonic
with regards to the state price density. Suppose we split state 2 into two different states
2A and 2B with probabilities π2A = 48/100 and π2B = 2/100 and prices p2A =
48/400 and p2B = 2/400 respectively. The optimal VaR constrained portfolio after
state splitting entails (x1 ≈ 1.11, x2A = 2.21, x2B ≈ 2.50, x3 ≈ 3.32, x4 ≈ 4.43)
which increases the expected utility to EU = ∑

i πi u (xi ) ≈ −0.3511. Indeed, this
portfolio is monotonic with respect to the state price density, yet the reverse ordering
condition does not hold. However, one could split such that all states are equally
probably with πi = 1/100 and scale prices accordingly. From this, optimality is
established.

5 Conclusion

We extend the prior literature on optimal portfolio allocation, subject to a deterministic
risk constraint, i.e., portfolio insurance, and allow for the probabilistic VaR constraint.
In this case, the optimal portfolio selection problem is computationally complex, and
the optimal VaR constrained portfolio solution may not be monotonic with respect to
the state price density.
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We further provide a sufficient condition under which the portfolio selection problem
becomes computionally simple. Moreover, we demonstrate that investors have an in-
centive for financial innovation through the introduction of new securities, even though
markets are initially complete. The new securities randomize within existing primi-
tive securities and effectively allow investors to better attain the VaR constraint and
thus improve expected utility. Furthermore, these securities enable polynomial time
solutions.

6 Proof

Proof (Proof of Theorem 2) We show that Problem 1 can be transformed into a simple
problem if π and p satisfy the reverse order relation, that is, πi ≤ π j if and only if
pi ≥ p j . First we claim that there exists an optimal solution x∗ of Problem 1 such
that 0 ≤ x∗

1 ≤ x∗
2 ≤ · · · ≤ x∗

n if (π, p) satisfies Condition 1.
For each feasible solution x of Problem 1 , we denote (x[1], x[2], . . . , x[n]) be a

permutation of (1, 2, . . . , n) such that xx[1] ≤ xx[2] ≤ · · · ≤ xx[n].
Let x∗ be an optimal solution of Problem 1. Let j be the smallest subscript such

that πx∗[ j] ≥ πx∗[ j+1] and px∗[ j] ≤ px∗[ j+1], and at least one of those two inequalities
is strict. Let

y = px∗[ j]x∗
x∗[ j] + px∗[ j+1]x∗

x∗[ j+1]
px∗[ j] + px∗[ j+1]

and

z = px∗[ j]x∗
x∗[ j] + px∗[ j+1]x∗

x∗[ j+1] − px∗[ j]K
px∗[ j+1]

Let us construct a new solution x+ such that

x+[ j] = x∗[ j + 1], x+[ j + 1] = x∗[ j];
x+[i] = x∗[i], i �= j, j + 1

x+
x+[ j] = z, x+

x+[ j+1] = K if x∗
x∗[ j] < K ≤ x∗

x∗[ j+1] and y < K

x+
x+[ j] = y, x+

x+[ j+1] = y otherwise

x+
x+[i] = x∗

x∗[i], i �= j, j + 1

In the sequel, we show that such a x+ is an optimal solution of Problem 1 as well.
We can easily see that such defined x+ satisfies the budget constraint.
To prove the optimality of x+, we need show that x+ satisfies the order condition

and insurance constraint, and the objective function value of x+ is not less than the
value of x∗. To this end, we consider three cases separately:

Case 1 x∗
x∗[ j] < K ≤ x∗

x∗[ j+1] and y < K .
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For this case, we have defined x+
x+[ j] = z, x+

x+[ j+1] = K . From the definition, we
can easily calculate that z < K ≤ x∗

x∗[ j+1].
Since px∗[ j] ≤ px∗[ j+1] and x∗

x∗[ j] < K , we have

(
px∗[ j] − px∗[ j+1]

) (
x∗

x∗[ j] − K
)

≥ 0 (9)

From (9), we can obtain

x∗
x∗[ j+1] + x∗

x∗[ j] ≤ K + z (10)

Let

λ1 = x∗
x∗[ j+1] − K

x∗
x∗[ j+1] − x∗

x∗[ j]
,

and

λ2 = x∗
x∗[ j+1] − z

x∗
x∗[ j+1] − x∗

x∗[ j]

From (10), we have (i) x∗
x∗[ j] ≤ z, hence the order condition x+

x+[1] ≤ x+
x+[2] ≤

· · · ≤ x+
x+[n] follows from x∗

x∗[1] ≤ x∗
x∗[2] ≤ · · · ≤ x∗

x∗[n]. Further we can easily
see that

∑
x+

i ≥K πi ≥ ∑
x∗

i ≥K πi ≥ 1 − δ which follows from πx+[ j] = πx∗[ j+1] ≤
πx∗[ j] = πx+[ j+1]. This indicates that x+ satisfies the insurance constraint since x∗
satisfies the insurance constraint.

(ii) λ1 + λ2 ≤ 1. Combine with u
(

x∗
x∗[ j]

)
≤ u

(
x∗

x∗[ j+1]
)

, we have

(1 − λ1)
(

u
(

x∗
x∗[ j+1]

)
− u

(
x∗

x∗[ j]
))

≥ λ2

(
u

(
x∗

x∗[ j+1]
)

− u
(

x∗
x∗[ j]

))
(11)

From the concavity of u(x), we also have

u(K ) ≥ λ1u
(

x∗
x∗[ j]

)
+ (1 − λ1) u

(
x∗

x∗[ j+1]
)

(12)

u(z) ≥ λ2u
(

x∗
x∗[ j]

)
+ (1 − λ2) u

(
x∗

x∗[ j+1]
)

(13)

Combine (11) with (12) and (13), we can get

u(K )− u
(

x∗
x∗[ j]

)
≥ u

(
x∗

x∗[ j+1]
)

− u(z) (14)
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Together with πx∗[ j] ≥ πx∗[ j+1], we obtain

πx∗[ j]u
(

x∗
x∗[ j]

)
+ πx∗[ j+1]u

(
x∗

x∗[ j+1]
)

≤ πx∗[ j]u(K )+ πx∗[ j+1]u(z)

= πx+[ j]u
(

x+
x+[ j]

)
+ πx+[ j+1]u

(
x+

x+[ j+1]
)

(15)

Case 2 x∗
x∗[ j] ≥ K or x∗

x∗[ j+1] < K .

In this case, we have defined x+
x+[ j] = x+

x+[ j+1] = y.
First we have

x∗
x∗[ j] ≤ y ≤ x∗

x∗[ j+1]

Hence the order condition remains true. Furthermore we have

∑

x+
i ≥K

πi =
∑

x∗
i ≥K

πi ≥ 1 − δ,

the insurance constraint is satisfied.
Next we like to show x+ remains optimal. For this purpose, we claim that

n∑

i=1

πi u(x
+
i ) ≥

n∑

i=1

πi u(x
∗
i )

Notice that

n∑

i=1

πi u
(
x+

i

) −
n∑

i=1

πi u
(
x∗

i

)

= (
πx∗[ j] + πx∗[ j+1]

)
u

(
px∗[ j]x∗

x∗[ j] + px∗[ j+1]x∗
x∗[ j+1]

px∗[ j] + px∗[ j+1]

)

−
(
πx∗[ j]u

(
x∗

x∗[ j]
)

+ πx∗[ j+1]u
(

x∗
x∗[ j+1]

))
,

we only need to show that

(
πx∗[ j] + πx∗[ j+1]

)
u

(
px∗[ j]x∗

x∗[ j] + px∗[ j+1]x∗
x∗[ j+1]

px∗[ j] + px∗[ j+1]

)

≥ πx∗[ j]u
(

x∗
x∗[ j]

)
+ πx∗[ j+1]u

(
x∗

x∗[ j+1]
)

Denote λ = px∗[ j]
px∗[ j]+px∗[ j+1] . Then 0 < λ < 1.
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From πx∗[ j] ≥ πx∗[ j+1], px∗[ j] ≤ px∗[ j+1], we have πx∗[ j] px∗[ j+1] ≥
πx∗[ j+1] px∗[ j]. Furthermore we can deduce that

px∗[ j]
(
πx∗[ j] + πx∗[ j+1]

) − (
px∗[ j] + px∗[ j+1]

)
πx∗[ j] ≤ 0,

or equivalently

λ
(
πx∗[ j] + πx∗[ j+1]

) − πx∗[ j] ≤ 0 (16)

From the monotone property of u(x), we have u(x∗
x∗[ j])− u(x∗

x∗[ j+1]) ≤ 0. Combine
with (16), it follows that

[
λ

(
πx∗[ j] + πx∗[ j+1]

) − πx∗[ j]
] (

u
(

x∗
x∗[ j]

)
− u

(
x∗

x∗[ j+1]
))

≥ 0

This inequality is equivalent to

(
πx∗[ j] + πx∗[ j+1]

) [
λu

(
x∗

x∗[ j]
)

+ (1 − λ)u
(

x∗
x∗[ j+1]

)]

≥ πx∗[ j]u
(

x∗
x∗[ j]

)
+ πx∗[ j+1]u

(
x∗

x∗[ j+1]
)

(17)

Notice that x+
x+[ j] = x+

x+[ j+1] = λx∗
x∗[ j] + (1 − λ)x∗

x∗[ j+1], from the concavity of
u(x), we can obtain that

u
(

x+
x+[ j]

)
= u

(
x+

x+[ j+1]
)

≥ λu
(

x∗
x∗[ j]

)
+ (1 − λ)u

(
x∗

x∗[ j+1]
)

(18)

Combine (17) and (18), to get

(
πx∗[ j] + πx∗[ j+1]

)
u

(
x+

x+[ j]
)

≥ πx∗[ j]u
(

x∗
x∗[ j]

)
+ πx∗[ j+1]u

(
x∗

x∗[ j+1]
)

Hence we conclude that x+ is also an optimal solution of Problem 1.

Case 3 x∗
x∗[ j] < K ≤ x∗

x∗[ j+1] but y ≥ K . In this case, we have also defined x+
x+[ j] =

x+
x+[ j+1] = y. First we have

∑
x+

i ≥K πi = ∑
x∗

i ≥K πi + πx∗[ j] ≥ 1 − δ, thus the
insurance constraint is satisfied. Following the same steps as for Case 2, we can show
that the order condition remains true, and the objective function value of x+ is not
worse than the objective function value of x∗. Therefore combining the three cases,
we can conclude that there exists an optimal solution x+ such that πx+[ j] ≤ πx+[ j+1]
and px+[ j] ≥ px+[ j+1].

Using the above technique repeatedly, we can always construct an optimal solution
of which the order of entries is in the order of πi , if Problem 1 has an optimal solution.
This indicates that there is an optimal solution x∗ such that

0 ≤ x∗
1 ≤ x∗

2 ≤ · · · ≤ x∗
n
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if (π, p) satisfies Condition 1. Let q be the number determined by (4). We show that
x∗

q+1 ≥ K for such an optimal solution. In fact, we have
∑

x∗
i <K πi ≤ δ by the

feasibility of x∗. If x∗
q+1 < K , we get

∑

x∗
i <K

πi ≥
q+1∑

i=1

πi > δ

from (4). This is a contradiction. Conversely if x is a solution such that
∑n

i=1 pi xi =
W , 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn , and xq+1 ≥ K , we have

∑
xi ≥K πi ≥ ∑l

i=q+1 πi ≥
1−δ. x becomes a feasible solution of Problem 1. Hence we can conclude that Problem
1 can be reformulated as (5) when (π, p) satisfies Condition 1. �	
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